
PegCpp: An efficient implementation
of parser generator in C++.

Andrzej Grosser Grzegorz Michalski
Institute of Computer and Information Sciences, Faculty of Mechanical Engineering and Computer Science,

Czestochowa University of Technology, Czestochowa, Poland

IX Konferencja Modelowanie Matematyczne w Fizyce i Technice 2017, 18-21 września 2017, Poraj

Introduction

Parsing expression grammars (pegs) is an alternative notation to BNF. The basic
difference between these notations results from the way, in which the alternative
is implemented. In the case of the parsing expression grammar alternatives are
ordered. Prior alternatives have a higher priority in choosing from later ones. In
this way, the description of language using pegs is always unambiguous. By using
pegs it is possible describing all the context-free languages and even some context-
sensitive languages.

pegs <- spacing pattern+ EOF

pattern <- rule ’<-’ spacing expression

expression <- alternative (’/’ spacing alternative)*

alternative <- (prefix? suffix)*

prefix <- (’&’ / ’!’) spacing

suffix <- primary ((’*’ / ’+’ / ’?’) spacing)?

primary <- ’(’ spacing expression ’)’ spacing / literal /

’.’ spacing / charclass / rule !’<-’

literal <- [’] (![’] .)* [’] spacing

charclass <- ’[’ (!’]’ (. ’-’ . / .))* ’]’ spacing

rule <- [a-z,A-z]([a-z,A-z,0-9])* spacing

spacing <- (’ ’ / ’\t’ / EOL)*

EOL <- ’\r’ / ’\n’ / ’\r\n’

EOF <- !.

Implementation

The parsing expression grammar can easily be translated into a parser by using the
recursive descent method. However, there is a problem with backtracking. When
one of the alternatives fails, it is necessary to consider the next one, which may
require a recalculation. It is possible to apply memoization of previous calculations,
thus reducing the computational complexity to linear. It is also possible to make
pegs using a parser machine.

Translators using parsing expressions have been implemented in many programming
languages, including C++. C++ implementations use templates and overloading
operators. In this way, the description of the language are implemented directly
in the code of the translator program. However, there is a problem with the
understanding of the description, since it needs an adaptation the notation of
parsing expressions to C++ syntax. In addition, the compiler messages associated
with advanced metaprogramming can be obscure.

This implementation is based on converting the specification language script to
the C++ source code. This way, the language description is clear and can be
build high performance parser. By separating the description of the parser from its
executable form is possible to support the language designer with the tools built
into the specification language translator. The generated parser code is syntacti-
cally correct, so the language designer does not need to look C++ compiler error
messages. The generated code can include optimizations related to the advanced
capabilities of C++.

Parsing expression grammar representation

PEGExpression

Pattern

CompoundPattern

Alternation Iteration SequencePredicate Option

Literal

SemanticAction

PredicateAnd PredicateNot ZMIteration OMIteration

LRExpression

1..n

1..n

The diagram UML presents classes for handling parsing expressions. The class
PEGExpression is the most important. It aggregates objects from the pat-
tern responsible for recognizing parsing expressions - both as composite patterns
(CompoundPatter) and simple patttern (Literal). Rest classes realizes the

recognition of the following types of parsing predicates:
I Predicate:

I and PredicateAnd (&e),
I not PredicateNot) (!e)

I ordered selection - Alternation (e1/e2),

I literal - Literal (e?),

I sequence - Sequence (e1e2)

I optional expression - Optional,
I iteration - Iteration:

I ZMIteration (e∗),
I OMIteration (e+).

This class allows to store the results of previous computations, while only the results
that are reused in the processing of alternative pattern paths are stored to reduce
memory occupancy.
The Pattern class is associated with the SemanticAction class. It implements
actions, also known as semantic actions, in response to the recognition in the
stream of characters of the relevant pattern. Typically, semantic actions are inser-
tions in the target programming language code. Semantic actions can provide an
alternative way to build a syntax tree when the standard implementation provided
by the library does not meet the requirements of the user.

Grammar

expr <- (term (’+’/’-’) expr / term) !.

term <- primary (’*’/’/’) term / primary

primary <- ’(’ expr ’)’ / int

int <- [0-9]

The parsing table for expression (2+5)*4

expr 28 7
term 7 2 5 4

primary 7 2 5 4
int 2 5 4

Input ’(’ ’2’ + ’5’ ) ’*’ ’4’ #


